Q.P. Code: 16EE207												R16
Reg. No:												

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations November-2020 **BASIC ELECTRICAL & ELECTRONICS ENGINEERING**

(Common to CSE, CSIT & AGE)

Time: 3 hours

(Answer all Six Units 6 X 10 = 60 Marks)

PART-A

UNIT-I

- **a** State and explain Kirchhoff Voltage law with suitable examples. 1 **5**M
 - **b** Determine the equivalent resistance for the circuit shown below and hence find the total **5M** current flowing in the circuit.

2 a Define the following terms: (i) Average value. (ii) RMS value. (iii) Form factor. **5M** (iv) Peak factor.

UN

b Show the form factor of the sine current is 1.11. **5M**

State and explain the maximum power transfer theorem. 3

OR **a** Determine the impedance parameters of the T network shown in figure below. 4 **10M**

b Define and explain about Y- parameters.

5M

5M

UNIT-III

- a Explain about principle of operation of DC Motors in detail. 5
 - **b** A 6 pole lap wound shunt motor has 500 conductors, the armature and shunt field **5M** resistances are 0.05Ω and 25Ω respectively. Find the speed of the motor if it takes 120A from dc supply of 100V flux per pole is 20mwb.

OR

a Derive EMF equation of a transformer. 6 **5M b** Explain OC and SC test of a single phase transformer. **5M**

. .

Max. Marks: 60

10M

PART-B

UNIT-IV

7	a	Describe the working of a PN junction diode with neat diagram.	5 M
	b	With a neat sketch explain the V-I characteristics of the diode.	5 M
		OR	
8	a	With a neat sketch explain the operation of Full-wave rectifier.	5 M
	b	Derive an expression for ripple factor of a Full- wave rectifier.	5 M
		UNIT-V	
9	a	Describe in detail the working of an NPN bipolar junction transistor.	5 M
	b	Explain with the help of diagrams various types of circuit configurations, which can be	5 M
		obtained from a bipolar junction transistor.	
		OR	
10	a	Explain in detail the theory of operation of n-channel JFET.	5 M
	b	Compare Bipolar junction transistor and junction field effect transistor.	5 M
		UNIT-VI	
11	a	Describe the working principle of Colpitts Oscillator with neat diagram.	5 M
	b	In an RC phase shift oscillator if $R1 = R2 = R3 = 200 \text{ k}\Omega$ and $C1 = C2 = C3 = 100 \text{ PF}$.	5 M
		Then find the frequency of oscillator.	
		OR	
12	a	Explain the basic forms of Op-Amp as inverting and non-inverting amplifier.	5 M
	b	Discuss the Characteristics of an ideal operational amplifier.	5 M
		*** END ***	

*** END ***